06月
07
2025
0

绿色轮胎的设计方法

从理论上讲,降低汽车油耗的途径有轻量化、减小轮胎滚动阻力及采用稀混合气发动机等。实际上,只有减小轮胎滚动阻力才是最切实可行的绿色轮胎设计途径,研究结果表明,轮胎的模具、花纹设计和轮胎结构和材料均对轮胎滚动阻力有影响。克服轮胎滚动阻力消耗的燃油占汽车总油耗的14.4%,而仅由胎面产生的滚动阻力就占轮胎滚动阻力的49%,其他部件的影响比例分别为:胎侧14%、胎体11%、胎圈11%、带束层8%、其余部件7%。由胎面直接造成的油耗约占7.1%。降低胎面的滚动阻力并保证抗湿滑性能良好将是绿色轮胎最基本的要求。

绿色轮胎技术主要从选择合适的胶种和配合剂,改进胎面胶料配方入手,再辅以减薄胎体、优化轮胎轮廓等结构设计手段,来达到降低轮胎滚动阻力的目的。可以预料,计算机辅助设计技术的介入和聚合物分子定向设计成果的推出,无疑将加速绿色轮胎开发进程。 子午化、无内胎化和扁平化是轮胎结构设计发展的方向, 也是绿色轮胎的首选。

绿色轮胎胎面一般由胎面胶和胎面基部胶两部分组成, 胎面胶的动态模量大于胎面基部胶, 胎面基部胶厚度与胎面胶厚度之比为0. 25~ 0. 70。通过用有限元法分析轮胎的水滑现象, 可以设计出能够明显改善水滑现象的胎面花纹, 如固特异公司的A quat red、米其林公司的Catamaran、普利司通公司的F170C 和倍耐力公司的P5000Dr ag o 等轮胎。 轮胎结构 大体可分为两种,即子午线结构和斜交结构。子午线结构与斜交结构的根本区别在于胎体。胎体是轮胎的基础,它是由帘线组成的层状结构。胎体层上部有帘线为周向排列的带束层,这种结构使帘线强度能够得到充分利用,故子午胎的帘布层数比斜交轮胎少40%-50%。

从设计上讲,斜交轮胎有很多局限性,由于斜交轮胎交叉排列的帘线强烈摩擦,使胎体容易生热,而且加速胎面花纹磨耗,其帘线布局也不能很好地提供优良的操纵性能和乘坐舒适性;而子午线轮胎的钢丝带束层则有较好的柔韧性以适应路面的不规则冲击,且经久耐用。它的帘布层结构还意味着在行驶中有小得多的摩擦,从而获得较长的胎面寿命和较好的燃油经济性。

子午线轮胎本身的优点使轮胎无内胎化成为可能。无内胎轮胎有一个公认优点,当轮胎被扎破后,不是像有内胎的轮胎(普通的斜交胎是有内胎的)那样爆裂,而是在一段时间内保持气压,从而提高了安全性。

由于子午线轮胎胎体的特殊结构,使得在行驶中轮胎的路面抓力大、效果好,装有子午线轮胎的汽车与装有斜交轮胎的汽车相比,其耐磨性可提高50%-100%,滚动阻力降低20%-30%,可以节约油耗约6%-8%。也正因为这样,同样车型选用子午线轮胎比选用斜交轮胎操纵性好,有较好的驾驶舒适性。

轮胎断面宽度增大时,滚动阻力呈下降趋势。这是因为轮胎断面宽增加而使胎侧部刚性减小,而对滚动阻力影响较小的侧部的变形增加,对滚动阻力影响较大的胎面部的变形减小所致。另外,随着轮胎断面宽度的加宽,胎面、带束层等主要部位的能量损失减小。因此加大轮胎断面宽度对降低滚动阻力有利。

如果胎圈部的填充胶条高度增高,则滚动阻力亦增加。因为随着填充胶条高度增高,产生滞后损失的物质体积增加,胎侧下部的能量损失亦增加。另外,填充胶条高度增加会因胎侧的刚性增加而使胎侧部变形减小,而对滚动阻力影响较大的胎面部的变形相对增大,这会导致滚动阻力增加。目前,胎体结构设计是向低断面方向发展。 胎面半径增大时,可降低轮胎的滚动阻力。这是因为胎面半径增大时轮胎产生平面接地屈挠变形,使因轮胎断面方向的屈挠变形所产生的应变能变小的缘故。也就是说,滚动阻力随着胎面半径的增大而减小,这主要得益于胎冠部和带束层能量损失减小。今后绿色轮胎胎面结构应朝如下方向发展:

(1)双层胎面

双层胎面轮胎具有高速、稳定、耐磨及生热低等优点,一般是由胎面和胎面基部两部分构成,其胎面与胎面基部胶具有不同的动态模量和tanδ。有关文献指出,胎面动态模量大于胎面基部动态模量(≥8.5 MPa),tanδ大于0.12,胎面基部厚度与胎面厚度之比为0.25-0.70。

(2)发泡胎面

发泡胎面是由发泡橡胶制成的,除胎面胶的一般组分外,还含有结晶型间同立构1,2-聚丁二烯(粉末状,平均粒径为60 nm),再配合发泡剂、抗氧剂等其他助剂。试验表明,使用发泡胎面制备的轮胎在干、湿路面上特别是在冰面上具有良好的制动和牵引性能,即使在炎热的夏季也完全能够保持驾驶稳定性、耐久性和低油耗,因此是绿色轮胎胎面胶的发展方向。

在进行轮胎结构设计时必须能够在不降低与滚动阻力相互矛盾的其他特性(湿滑性、安全性、振动性等)的前提下降低滚动阻力。作为具体的降低滚动阻力方案,必须综合考虑轮胎形状和橡胶配置,特别是要考虑对由复合材料构成的带束层、胎体帘布层滚动阻力的影响。作为轮胎结构研究,不能仅凭过去的直觉和经验,还要用模拟技术来加速低滚动阻力轮胎的开发。

有限元法采用橡胶材料的能量结构方程式已有数十年的历史,已从线性弹性方程式过渡到Mooney-Rivlin方程式,最近还在大变形领域引入了非线性结构方程式。作为以轮胎为代表的许多工业橡胶材料使用的填充橡胶,在0-100%的应变领域中的储能模量、损耗模量、tan8这些黏弹特性使应变具有非线性,一般被理解为佩因效应(弗莱彻-金特效应)。考虑这一点的非线性结构方程式近几年也被提出来了。在正常车轮转动状态下,应变在轮胎变形中也占大部分,控制该应变领域的黏弹性对控制轮胎滚动阻力也尤为重要。实际上,通过将表示填充橡胶在0-100%的应变领域的储能模量、损耗模量、tanδ这些黏弹特性的非线性黏弹性结构方程式应用于FEA(有限元分析),可使轮胎滚动阻力的预测精度较传统预测有大幅度的提高。这样一来,降低轮胎滚动阻力的轮胎结构设计、新材料开发和配方设计的精度和效率就相应地得到提高。目前已经开发出通过用有限元法模拟轮胎滚动阻力,进而进行绿色轮胎设计的方法。 通常,降低轮胎滚动阻力有如下两种基本方法:

(1)减小轮胎质量

减小轮胎质量是降低轮胎滚动阻力最快速、最有效的方法。为了保证轮胎质量小,在确保轮胎使用性能的前提下,必须采用最小的部件厚度。轮胎生产厂必须严格控制工艺,以保证部件达到最小厚度,绝不允许工厂采取擅自加大部件厚度的办法来解决生产问题。采用轻质材料制造各轮胎部件也是减小轮胎质量的一种有效方法,采用芳纶带束层替代钢丝带束层就是一个明显的例子。

(2)减小材料能效

降低轮胎滚动阻力的第二种方法是减小轮胎材料的能量损失(滞后损失)。聚酯帘线的滞后损失较大,但经过合适的改良后,有可能推出较小滞后损失的品种。